Mersenne banner

Séminaire Laurent Schwartz — EDP et applications

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Browse issues
  • Year 2019-2020
  • Talk no. 11
  • Next
Crime pays; homogenization for long times
Grégoire Allaire1; Agnes Lamacz2; Jeffrey Rauch3
1 Centre de Mathématiques Appliquées, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
2 Department of Mathematics, TU Dortmund, 44227 Dortmund, Germany
3 Department of Mathematics, University of Michigan Ann Arbor 48109 MI, USA
Séminaire Laurent Schwartz — EDP et applications (2019-2020), Talk no. 11, 9 p.
  • Article information
  • Export
  • How to cite
Published online: 2022-02-04
DOI: 10.5802/slsedp.141
Author's affiliations:
Grégoire Allaire 1; Agnes Lamacz 2; Jeffrey Rauch 3

1 Centre de Mathématiques Appliquées, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
2 Department of Mathematics, TU Dortmund, 44227 Dortmund, Germany
3 Department of Mathematics, University of Michigan Ann Arbor 48109 MI, USA
  • BibTeX
  • RIS
  • EndNote
@article{SLSEDP_2019-2020____A8_0,
     author = {Gr\'egoire Allaire and Agnes Lamacz and Jeffrey Rauch},
     title = {Crime pays; homogenization for long times},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:11},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2019-2020},
     doi = {10.5802/slsedp.141},
     language = {en},
     url = {https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.141/}
}
TY  - JOUR
AU  - Grégoire Allaire
AU  - Agnes Lamacz
AU  - Jeffrey Rauch
TI  - Crime pays; homogenization for long times
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:11
PY  - 2019-2020
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.141/
UR  - https://doi.org/10.5802/slsedp.141
DO  - 10.5802/slsedp.141
LA  - en
ID  - SLSEDP_2019-2020____A8_0
ER  - 
%0 Journal Article
%A Grégoire Allaire
%A Agnes Lamacz
%A Jeffrey Rauch
%T Crime pays; homogenization for long times
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:11
%D 2019-2020
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://doi.org/10.5802/slsedp.141
%R 10.5802/slsedp.141
%G en
%F SLSEDP_2019-2020____A8_0
Grégoire Allaire; Agnes Lamacz; Jeffrey Rauch. Crime pays; homogenization for long times. Séminaire Laurent Schwartz — EDP et applications (2019-2020), Talk no. 11, 9 p. doi : 10.5802/slsedp.141. https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.141/
  • References
  • Cited by

[1] A. Abdulle, M. Grote, Ch. Stohrer, Finite element heterogeneous multiscale method for the wave equation: long-time effects, Multiscale Model. Simul. 12 (2014), pp.1230-1257. | DOI | MR | Zbl

[2] A. Abdulle & T. N. Pouchon, A priori error analysis of the finite element heterogeneous multiscale method for the wave equation in heterogeneous media over long time, preprint 2015. | DOI | MR | Zbl

[3] A. Abdulle & T. N. Pouchon, Effective models for the multidimensional wave equation in heterogeneous media over long time and numerical homogenization, Mathematical Models & Methods In Applied Sciences, vol. 26, num. 14 (2016). | DOI | MR | Zbl

[4] G. Allaire, M. Briane & M. Vanninathan, A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures, SEMA Journal 73(3), 237-259 (2016). | DOI | MR | Zbl

[5] G. Allaire, M. Palombaro, J. Rauch, Diffractive Geometric Optics for Bloch Wave Packets, Archive Rat. Mech. Anal., 202, pp.373-426 (2011). | DOI | MR | Zbl

[6] G. Allaire, T. Yamada, Optimization of dispersive coefficients in the homogenization of the wave equation in periodic structures, submitted. HAL preprint: hal-01341082 (July 2016). | DOI | MR | Zbl

[7] N. Bakhvalov, G. Panasenko, Homogenization: Averaging Processes in Periodic Media, Kluwer, Dordrecht (1989). | DOI | Zbl

[8] A. Benoit, A. Gloria, Long-time homogenization and asymptotic ballistic transport of classical waves, preprint. | DOI | Zbl

[9] A. Bensoussan, J.-L. Lions & G. Papanicolaou, Asymptotic analysis for periodic structures, corrected reprint of the 1978 original, AMS Chelsea Publishing, Providence, RI, (2011). | DOI

[10] S. Brahim-Otsmane, G. Francfort & F. Murat, Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl. (9) 71:197–231 (1992). | DOI | MR | Zbl

[11] C. Conca, R. Orive & M. Vanninathan, Bloch approximation in homogenization and applications, SIAM J. Math. Anal., 33 (5) (2002), 1166-1198. | DOI | MR | Zbl

[12] C. Conca, R. Orive & M. Vanninathan, On Burnett coefficients in periodic media, J. Math. Phys., 47 (3) (2006), 11 pp. | DOI | MR | Zbl

[13] T. Dohnal, A. Lamacz & B. Schweizer, Bloch-wave homogenization on large time scales and dispersive effective wave equations, Multiscale Model. Simul., 12 (2) (2014), 488-513. | DOI | MR | Zbl

[14] J. Fish, W. Chen, & G. Nagai, Non-local dispersive model for wave propagation in heterogeneous media: multi-dimensional case, Internat. J. Numer. Methods Engrg., 54(3):347-363, (2002). | DOI | MR | Zbl

[15] V Jikov, S. Kozlov, O. Oleinik, Homogenization of differential operators and integral functionals, Springer, Berlin, (1995). | DOI

[16] A. Lamacz, Dispersive effective models for waves in heterogeneous media, Math. Models Methods Appl. Sci., 21 (9) (2011), 1871-1899. | DOI | MR | Zbl

[17] D. Lannes, High-frequency nonlinear optics: from the nonlinear Schrödinger approximation to ultrashort-pulses equations, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), no. 2, 253-286. | DOI | Zbl

[18] J. Rauch, Hyperbolic partial differential equations and geometrics optics, volume 133 of Graduate Studies in Mathematics, American Mathematical Society (2012). | DOI | Zbl

[19] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Lecture Notes in Physics 129 (1980). | DOI | Zbl

[20] F. Santosa, W. Symes, A dispersive effective medium for wave propagation in periodic composites, SIAM J. Appl. Math., 51 (1991), 984-1005. | DOI | MR | Zbl

[21] V. P. Smyshlyaev, K. D. Cherednichenko, On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media, The J. R. Willis 60th anniversary volume. J. Mech. Phys. Solids, 48 (6-7) (2000), 1325-1357. | DOI | MR | Zbl

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
e-ISSN : 2266-0607