Mersenne banner

Séminaire Laurent Schwartz — EDP et applications

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Browse issues
  • Year 2019-2020
  • Talk no. 2
  • Next
Modulated free energy and mean field limit
Didier Bresch1; Pierre-Emmanuel Jabin2; Zhenfu Wang3
1 LAMA CNRS UMR5127, Univ. Savoie Mont-Blanc 73376 Le Bourget du Lac, France
2 CSCAMM and departement of Mathematics, Univ. of Maryland College Park, MD, USA
3 Department of Mathematics, Univ. of Pennsylvania, Philadelphia PA, USA
Séminaire Laurent Schwartz — EDP et applications (2019-2020), Talk no. 2, 22 p.
  • Abstract

This is the document corresponding to the talk the first author gave at IHÉS for the Laurent Schwartz seminar on November 19, 2019. It concerns our recent introduction of a modulated free energy in mean-field theory in [4]. This physical object may be seen as a combination of the modulated potential energy introduced by S. Serfaty [See Proc. Int. Cong. Math. (2018)] and of the relative entropy introduced in mean field limit theory by P.–E. Jabin, Z. Wang [See Inventiones 2018]. It allows to obtain, for the first time, a convergence rate in the mean field limit for Riesz and Coulomb repulsive kernels in the presence of viscosity using the estimates in [8] and [20]. The main objective in this paper is to explain how it is possible to cover more general repulsive kernels through a Fourier transform approach as announced in [4] first in the case σ N →0 when N→+∞ and then if σ>0 is fixed. Then we end the paper with comments on the particle approximation of the Patlak-Keller-Segel system which is associated to an attractive kernel and refer to [C.R. Acad Science Paris 357, Issue 9, (2019), 708–720] by the authors for more details.

  • Article information
  • Export
  • How to cite
Published online: 2020-01-16
Zbl: 07124517
DOI: 10.5802/slsedp.135
Author's affiliations:
Didier Bresch 1; Pierre-Emmanuel Jabin 2; Zhenfu Wang 3

1 LAMA CNRS UMR5127, Univ. Savoie Mont-Blanc 73376 Le Bourget du Lac, France
2 CSCAMM and departement of Mathematics, Univ. of Maryland College Park, MD, USA
3 Department of Mathematics, Univ. of Pennsylvania, Philadelphia PA, USA
  • BibTeX
  • RIS
  • EndNote
@article{SLSEDP_2019-2020____A1_0,
     author = {Didier Bresch and Pierre-Emmanuel Jabin and Zhenfu Wang},
     title = {Modulated free energy and mean~field~limit},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:2},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2019-2020},
     doi = {10.5802/slsedp.135},
     zbl = {07124517},
     language = {en},
     url = {https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.135/}
}
TY  - JOUR
AU  - Didier Bresch
AU  - Pierre-Emmanuel Jabin
AU  - Zhenfu Wang
TI  - Modulated free energy and mean field limit
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:2
PY  - 2019-2020
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.135/
UR  - https://zbmath.org/?q=an%3A07124517
UR  - https://doi.org/10.5802/slsedp.135
DO  - 10.5802/slsedp.135
LA  - en
ID  - SLSEDP_2019-2020____A1_0
ER  - 
%0 Journal Article
%A Didier Bresch
%A Pierre-Emmanuel Jabin
%A Zhenfu Wang
%T Modulated free energy and mean field limit
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:2
%D 2019-2020
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://doi.org/10.5802/slsedp.135
%R 10.5802/slsedp.135
%G en
%F SLSEDP_2019-2020____A1_0
Didier Bresch; Pierre-Emmanuel Jabin; Zhenfu Wang. Modulated free energy and mean field limit. Séminaire Laurent Schwartz — EDP et applications (2019-2020), Talk no. 2, 22 p. doi : 10.5802/slsedp.135. https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.135/
  • References
  • Cited by

[1] D. Arsenio, L. Saint–Raymond. From the Vlasov Maxwell Boltzmann System to Incompressible Viscous Electro–magneto–hydrodynamics. EMS Monographs in Mathematics (2019). | DOI | Zbl

[2] A. Blanchet, J. Dolbeault, B. Perthame. Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions. Electronic Journal of Differential Equations [EJDE)[electronic only] (2006). | DOI | Zbl

[3] D. Bresch, P.–E. Jabin. Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor. Annals. of Math, 577–684, volume 188, (2018). | DOI | MR | Zbl

[4] D. Bresch, P.–E. Jabin, Z. Wang. On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak-Keller-Segel model. C.R. Acad. Sciences Mathématiques, 357, Issue 9, (2019), 708–720. | DOI | MR | Zbl

[5] D. Bresch, P.–E. Jabin, Z. Wang. Mean field limit and quantitative estimates with a large class of singular kernels. In preparation (2019). | DOI | MR | Zbl

[6] P. Cattiaux, L. Pédèches. The 2-D stochastic Keller-Segel particle model: existence and uniqueness. ALEA Lat. Am. J. Probab Stat, 13 (1) (2016, 447–463. | DOI | MR | Zbl

[7] J. Dolbeault, B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in R 2 . C. R. Math. Acad. Sci. Paris 339, no. 9, 611–616, (2004). | DOI | MR | Zbl

[8] M. Duerinckx. Mean Field Limit for some Riesz interaction gradient flows. SIAM J. Math. Anal, 48, 3, (2016), 2269–2300. | DOI | MR | Zbl

[9] N. Fournier, B. Jourdain. Stochastic particle approximation of the Keller-Segel equation and two dimensional generalization of Bessel processes. Ann. Appl. Proba, 5 (2017), 2807–2861. | DOI | MR | Zbl

[10] D. Godinho, C. Quiñinao. Propagation of chaos for a sub-critical Keller-Segel Model. Ann. Inst. H. Poincaré Probab. Statist. 51, 965–992 (2015). | DOI | MR | Zbl

[11] F. Golse. On the dynamics of large particle systems in the mean field limit. In: Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Volume 3 of the series Lecture Notes in Applied Mathematics and Mechanics, pp. 1–144. Springer, (2016) | DOI

[12] D. Han-Kwan. Quasineutral limit of the Vlasov-Poisson system with massless electrons. Comm. Partial Diff. Eqs. 1385–1425, (2010). | DOI | MR | Zbl

[13] J. Haskovec, C. Schmeiser. Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system. Comm. Partial Differential Equations 36, 940–960 (2011). | DOI | MR | Zbl

[14] P.–.E. Jabin. A review for the mean field limit for Vlasov equations. Kinet. Relat. Models 7, 661–711 (2014). | DOI | MR | Zbl

[15] P.–E. Jabin, Z. Wang. Quantitative estimates of propagation of chaos for Stochastic systems with W -1,∞ kernels. Inventiones, 214 (1), (2018), 523–591. | DOI | MR | Zbl

[16] P.–E. Jabin, Z. Wang. Mean field limit for stochastic particle systems. Volume 1: Theory, Models, Applications, Birkhauser-Springer (Boston), series Modelling and Simulation in Science Engineering and Technology (2017). | DOI

[17] M. Puel, L. Saint-Raymond. Quasineutral limit for the relativistic Vlasov–Maxwell system Asymptotic Analysis, vol. 40, no. 3,4, pp. 303–352, (2004). | DOI | MR | Zbl

[18] L. Saint-Raymond. Des points vortex aux équations de Navier-Stokes (d’après P.–E. Jabin et Z. Wang). In Séminaire Bourbaki, 70ème année, 2017–2018. | DOI

[19] S. Serfaty. Systems of points with Coulomb interactions, in Proc. Int. Cong. of Math. Rio de Janeiro, vol. 1, 2018, 935–978. | DOI | MR | Zbl

[20] S. Serfaty. Mean Field limit for Coulomb-type flows. Submitted for publication (2018). | DOI | MR | Zbl

[21] M. Tomasevic. On a probabilistic interpretation of the Keller-Segel parabolic-parabolic equations. PhD Thesis, Université Côte d’Azur, (2018). | DOI | MR

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
e-ISSN : 2266-0607