We present some results obtained in collaboration with Simão Correia (University of Lisbon) and Luis Vega (University of Bilbao), regarding the understanding of self-similar solutions for the modified Korteweg-de Vries equation (mKdV). We obtain the description of self-similar solutions in Fourier space, and we also prove a local well-posedness result in a critical space where self-similar solutions live. As a consequence, we can study the flow of (mKdV) around self-similar solutions: in particular, we give an asymptotic description of small solutions as and construct solutions with a prescribed blow up behavior as .
@article{SLSEDP_2018-2019____A4_0, author = {Rapha\"el C\^ote}, title = {Self-similar solutions and critical spaces for {the~modified~Korteweg-de} {Vries} equation}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:4}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2018-2019}, doi = {10.5802/slsedp.130}, language = {en}, url = {https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.130/} }
TY - JOUR AU - Raphaël Côte TI - Self-similar solutions and critical spaces for the modified Korteweg-de Vries equation JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:4 PY - 2018-2019 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.130/ DO - 10.5802/slsedp.130 LA - en ID - SLSEDP_2018-2019____A4_0 ER -
%0 Journal Article %A Raphaël Côte %T Self-similar solutions and critical spaces for the modified Korteweg-de Vries equation %J Séminaire Laurent Schwartz — EDP et applications %Z talk:4 %D 2018-2019 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.130/ %R 10.5802/slsedp.130 %G en %F SLSEDP_2018-2019____A4_0
Raphaël Côte. Self-similar solutions and critical spaces for the modified Korteweg-de Vries equation. Séminaire Laurent Schwartz — EDP et applications (2018-2019), Talk no. 4, 15 p. doi : 10.5802/slsedp.130. https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.130/
[1] V. Banica and L. Vega. Evolution of polygonal lines by the binormal flow. , 2018. | arXiv
[2] Fernando Bernal-Vilchis and Pavel I. Naumkin. Self-similar asymptotics for solutions to the intermediate long wave equation. J. Evol. Equ., 2019. To appear. | DOI | MR | Zbl
[3] Simão Correia, Raphaël Côte, and Luis Vega. Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation. , 2018. | arXiv | DOI | MR
[4] Simão Correia, Raphaël Côte, and Luis Vega. Self-similar dynamics for the modified Korteweg-de Vries equation. , 2019. | arXiv | DOI
[5] P. A. Deift and X. Zhou. Asymptotics for the Painlevé II equation. Comm. Pure Appl. Math., 48(3):277–337, 1995. | DOI | Zbl
[6] A. S. Fokas and M. J. Ablowitz. On the initial value problem of the second Painlevé transcendent. Comm. Math. Phys., 91(3):381–403, 1983. | DOI | Zbl
[7] Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, and Victor Yu. Novokshenov. Painlevé transcendents. The Riemann-Hilbert approach, volume 128 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006. | Zbl
[8] Pierre Germain, Fabio Pusateri, and Frédéric Rousset. Asymptotic stability of solitons for mKdV. Adv. Math., 299:272–330, 2016. | DOI | MR | Zbl
[9] R.E. Goldstein and D.M. Petrich. Soliton’s, Euler’s equations, and vortex patch dynamics. Phys. Rev. Lett., 69(4):555–558, 1992. | DOI | MR | Zbl
[10] Axel Grünrock and Luis Vega. Local well-posedness for the modified KdV equation in almost critical -spaces. Trans. Amer. Math. Soc., 361:5681–5694, 2009. | DOI | MR | Zbl
[11] Benjamin Harrop-Griffiths. Long time behavior of solutions to the mKdV. Comm. Partial Differential Equations, 41(2):282–317, 2016. | DOI | MR | Zbl
[12] S. P. Hastings and J. B. McLeod. A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rational Mech. Anal., 73(1):31–51, 1980. | DOI | Zbl
[13] Nakao Hayashi and Pavel Naumkin. On the modified Korteweg-de Vries equation. Math. Phys. Anal. Geom., 4(3):197–227, 2001. | DOI | Zbl
[14] Nakao Hayashi and Pavel I. Naumkin. Large time behavior of solutions for the modified Korteweg-de Vries equation. Internat. Math. Res. Notices, (8):395–418, 1999. | DOI | Zbl
[15] Tosio Kato. On the Cauchy problem for the (generalized) Korteweg-de Vries equation. In Studies in applied mathematics, volume 8 of Adv. Math. Suppl. Stud., pages 93–128. Academic Press, New York, 1983. | Zbl
[16] Carlos E. Kenig, Gustavo Ponce, and Luis Vega. Well-posedness and scattering result for the generalized Korteweg-De Vries equation via contraction principle. Comm. Pure Appl. Math., 46:527–620, 1993. | DOI | MR | Zbl
[17] Carlos E. Kenig, Gustavo Ponce, and Luis Vega. On the concentration of blow up solutions for the generalized KdV equation critical in . In Nonlinear wave equations (Providence, RI, 1998), volume 263 of Contemp. Math., pages 131–156. Amer. Math. Soc., Providence, RI, 2000. | DOI | Zbl
[18] Yvan Martel and Frank Merle. A Liouville theorem for the critical generalized Korteweg-de Vries equation. J. Math. Pures Appl. (9), 79:339–425, 2000. | DOI | MR | Zbl
[19] G. Perelman and L. Vega. Self-similar planar curves related to modified Korteweg-de Vries equation. J. Differential Equations, 235(1):56–73, 2007. | DOI | MR | Zbl
Cited by Sources: