Mersenne banner

Séminaire Laurent Schwartz — EDP et applications

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Browse issues
  • Year 2016-2017
  • Talk no. 11
  • Next
Strictly dissipative boundary value problems at trihedral corners
Laurence Halpern1; Jeffrey Rauch2
1 LAGA, UMR 7539 CNRS, Université Paris 13 93430 Villetaneuse France
2 Department of Mathematics University of Michigan Ann Arbor 48109 MI USA
Séminaire Laurent Schwartz — EDP et applications (2016-2017), Talk no. 11, 10 p.
  • Abstract

For time independent symmetric hyperbolic systems with elliptic generators, gluing strictly dissipative boundary conditions at a multihedral corner yields a well posed boundary value problem. Uniqueness of solutions with square integrable boundary traces is proved using the Laplace transform and an H 1/2 regularity theorem.

  • Article information
  • Export
  • How to cite
Published online: 2017-11-19
DOI: 10.5802/slsedp.101
Author's affiliations:
Laurence Halpern 1; Jeffrey Rauch 2

1 LAGA, UMR 7539 CNRS, Université Paris 13 93430 Villetaneuse France
2 Department of Mathematics University of Michigan Ann Arbor 48109 MI USA
  • BibTeX
  • RIS
  • EndNote
@article{SLSEDP_2016-2017____A11_0,
     author = {Laurence Halpern and Jeffrey Rauch},
     title = {Strictly dissipative boundary value problems at trihedral corners},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:11},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2016-2017},
     doi = {10.5802/slsedp.101},
     language = {en},
     url = {https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.101/}
}
TY  - JOUR
AU  - Laurence Halpern
AU  - Jeffrey Rauch
TI  - Strictly dissipative boundary value problems at trihedral corners
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:11
PY  - 2016-2017
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.101/
DO  - 10.5802/slsedp.101
LA  - en
ID  - SLSEDP_2016-2017____A11_0
ER  - 
%0 Journal Article
%A Laurence Halpern
%A Jeffrey Rauch
%T Strictly dissipative boundary value problems at trihedral corners
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:11
%D 2016-2017
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.101/
%R 10.5802/slsedp.101
%G en
%F SLSEDP_2016-2017____A11_0
Laurence Halpern; Jeffrey Rauch. Strictly dissipative boundary value problems at trihedral corners. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Talk no. 11, 10 p. doi : 10.5802/slsedp.101. https://slsedp.centre-mersenne.org/articles/10.5802/slsedp.101/
  • References
  • Cited by

[1] K.O. Friedrichs, Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7 (1954) 345-392. | DOI | MR | Zbl

[2] K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11 (1958) 333-418. | DOI | MR | Zbl

[3] P. Grisvard, Singularités des problèmes aux limites dans des polyèdres. (French) [Singularities of boundary value problems in polyhedra], Séminaire Goulaouic-Meyer-Schwartz, 1981/1982, exposé no. VIII, École Polytechnique, Palaiseau, 1982. | Numdam | Zbl

[4] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, Boston, MA, 1985 | DOI | Zbl

[5] L. Halpern and J.R. Rauch, Bérenger/Maxwell with discontinous absorptions: existence, perfection, and no loss, Séminaire Laurent Schwartz Année 2012-2013, exposé no. X, École Polytechnique, Palaiseau, 2014. | DOI | Zbl

[6] L. Halpern and J.R. Rauch, Hyperbolic boundary value problems with trihedral corners, Discrete Contin. Dyn. Syst. 36, no. 8, 4403-4450, 2016. | DOI | MR | Zbl

[7] P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13 427-455, 1960. | DOI | MR | Zbl

[8] G. Métivier and J. Rauch, Strictly dissipative nonuniqueness with corners in Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics, Springer-Verlag, 2017, to appear. | DOI | Zbl

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
e-ISSN : 2266-0607