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Mean-field evolution of fermionic systems

Marcello Porta

Abstract

We study the dynamics of interacting fermionic systems, in the mean-field regime. We
consider initial states which are close to quasi-free states and prove that, under suitable
assumptions on the inital data and on the many-body interaction, the quantum evolu-
tion of the system is approximated by a time-dependent quasi-free state. In particular
we prove that the evolution of the reduced one-particle density matrix converges, as the
number of particles goes to infinity, to the solution of the time-dependent Hartree-Fock
equation. Our theorems allow to describe the dynamics of both pure states (zero tem-
perature states) and mixed states (positive temperature states). Our results hold for all
times, and give effective estimates on the rate of convergence towards the Hartree-Fock
evolution. The results on pure states are based on joint works with N. Benedikter and B.
Schlein, [5, 6]; while those on mixed states are based on a joint work with N. Benedikter,
V. Jaksic, C. Saffirio and B. Schlein, [7].

1 Introduction

Systems composed by many interacting particles are often too difficult to describe mathe-
matically starting from first principles. A major goal of statistical mechanics is to provide
effective models to describe complex systems, that capture the main features of the system
under investigation and at that the same time can be studied explicitly. For instance, con-
cerning the dynamics of classical particles, two well-known examples of effective models are
the Boltzmann equation, for an interacting gas in the low density regime, or the Vlasov
equation, for particles interacting in the mean-field scaling. For quantum systems, examples
of effective theories are the Thomas-Fermi theory for the ground state of large atoms, or
the Gross-Pitaevskii theory, for the ground-state and the dynamics of Bose-Einstein conden-
sates. Physically, these models are widely accepted as good effective descriptions of complex
interacting particle systems. The question of rigorously proving their validity is, however,
not at all an easy one. Nevertheless, after decades of intense research, the above mentioned
effective theories have been rigorously justified starting from microscopic principles; see, for
instance, [16, 8, 18, 17, 11].

Here I will focus on fermionic systems. Compared to bosonic systems, the mathematical
understanding of the validity of fermionic effective theories is at a much earlier stage. I will
focus on the dynamics of interacting fermionic systems in the mean-field regime. In particu-
lar, I will present two theorems: one concerns the rigorous derivation of the time-dependent
Hartree-Fock equation for pure states (i.e. zero temperature states), while the other concerns
the analogous result for fermionic mixed states (i.e. positive temperature states).

This note is organized as follows. In Section 2 I will introduce fermionic mean-field
scaling, and I will recall the definitions of two effective models for the ground state of
fermionic systems in the mean-field regime: Thomas-Fermi theory and Hartree-Fock theory.
In Section 3 I will discuss fermionic dynamics in the mean-field limit, which turns out to
be naturally coupled with a semiclassical scaling. In particular, I will recall two well-known

Séminaire Laurent-Schwartz — EDP et applications
Centre de mathématiques Laurent Schwartz, 2014-2015
Exposé no VIII, 1-13

VIII–1



effective evolution equations, that are expected to provide a good description of the dynamics
of fermionic systems in this scaling regime: namely, the Vlasov equation and the time-
dependent Hartree-Fock equation. Finally, in Sections 4, 5 I will present our results.

2 Fermionic mean field scaling

We consider a system of N � 1 quantum particles in R3, with wave function ψN ∈ L2(R3N ),
‖ψN‖2 = 1. We assume the particles to be fermions; that is

ψN ∈ L2
a(R3N ) :=

{
ψ ∈ L2(R3N ) | ψ(x1, . . . , xn) = σπψ(xπ(1), . . . , xπ(N))

}
, (2.1)

where π is a permutation of {1, 2, . . . , N} with sign σπ ∈ {−1,+1}. The Hamiltonian of the
system has the form

Htrap
N =

N∑

j=1

[
−∆j + Vext(xj)

]
+ λ

N∑

i<j

V (xi − xj) , (2.2)

where Vext confines the system in a region Λ ⊂ R3, with volume |Λ| = O(1). That is, we
are considering a high density regime: ρ = N/|Λ| = O(N). The interaction potential V is
supposed to vary on the scale of Λ: each particle interacts with the remaining N − 1. We
will choose the coupling constant λ ≡ λ(N) in such a way that the interaction energy per
particle is not negligible with respect to the kinetic energy per particle. This choice defines
the mean-field regime.

To properly define fermionic mean-field scaling, it is useful to recall the typical sizes of
kinetic and of interaction energy for the kind of system under study. Let us start with the
interaction energy. For a bounded potential V we have, independently of the statistics of
the particles:

〈ψN , λ
∑

i<j

V (xi − xj)ψN 〉 = O(λN2) ; (2.3)

the total interaction energy grows quadratically in the particle number, simply because the
sum involves O(N2) terms. The size of the interaction energy is independent of the fermionic
nature of the wave function. Instead, the antisymmetry of the wave function plays a crucial
role in estimating the size of the kinetic energy. A general way to see that is by the Lieb-
Thirring kinetic energy inequality. This inequality states that for any ψ ∈ L2

a(R3N ):

〈ψN ,
N∑

i=1

−∆i ψN 〉 ≥ C
∫
dx ρψ(x)5/3 , (2.4)

for a suitable constant C > 0 independent of N and ψ. The density ρψ is defined as follows:

ρψ(x) := N

∫
dx2 . . . dxN |ψN (x, x2, . . . , xN )|2 , (2.5)

and the normalization is chosen so that ‖ρ‖1 = N . Thus, under reasonable assumptions on
the density of the system we have

〈ψN ,
N∑

i=1

−∆j ψN 〉 & N5/3 . (2.6)
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Eqs. (2.3), (2.6) show that in order to define a nontrivial mean-field scaling one is led to the
choice λ = N−1/3. That is, the mean-field Hamiltonian is:

Htrap
N =

N∑

j=1

[
−∆j + Vext(xj)

]
+N−1/3

N∑

i<j

V (xi − xj) . (2.7)

One is typically interested in the ground state properties of this Hamiltonian (e.g., the ground
state energy). Another interesting question, which is the one we will investigate here, is to
describe the time evolution of the low energy states of Htrap

N , once the trapping potential has
been modified (otherwise the dynamics is trivial). Of course, the mean-field scaling simplifies
the analysis; but still, these problems are far from being trivial. We will start by rewieving
two well-known effective theories for the ground state of Htrap

N , Thomas-Fermi theory and
Hartree-Fock theory, which capture important features of the model as N →∞. After this
introductory part, we will focus on the dynamical properties of the system.

2.1 Thomas-Fermi theory

The simplest effective theory for the ground state of Htrap
N is Thomas-Fermi theory. This

theory only depends on the density of the system. More precisely, given a density profile
ρ ∈ T := {ρ | ρ(x) ≥ 0, ‖ρ‖1 = N, ‖ρ‖5/3 <∞}, its Thomas-Fermi energy is:

ETF(ρ) =
3

5
cTF

∫
dx ρ(x)5/3 +

∫
dxVext(x)ρ(x) +D(ρ, ρ) ,

D(ρ, ρ) =
1

2N1/3

∫
dxdy V (x− y)ρ(x)ρ(y) .

(2.8)

with cTF = (6π2)2/3. The first term in (2.8) approximates the kinetic energy of the system,
while the last two describe the interaction of the particles with the external trap and among
each other.

In the limit N → ∞, Thomas-Fermi theory provides a good approximation of the full
ground state energy. For example, for a bounded potential such that V̂ ≥ 0:

inf
ψ∈L2

a(R3N )

〈ψ,Htrap
N ψ〉

〈ψ,ψ〉 = inf
ρ∈T
ETF (ρ) + o(N5/3) . (2.9)

Notice that the Thomas-Fermi energy is O(N5/3), hence it captures the leading behavior
of the ground state energy as N → ∞. In Eq. (2.9), the main source of error comes from

approximating the kinetic energy with ‖ρ‖5/35/3.

Concerning rigorous results, the validity of Thomas-Fermi theory has been first proved
by Lieb-Simon for large atoms (which can be thought as mean-field systems) in [18].

2.2 Hartree-Fock theory

Hartree-Fock theory provides a better approximation of the ground state of Htrap
N . It depends

on the reduced one-particle density matrix γ. Given a fermionic wave function ψN ∈ L2
a(R3N ),

we define its reduced one-particle density matrix as:

γ
(1)
ψ := N tr2,...,N |ψN 〉〈ψN | , (2.10)

where the trace is over N−1 particle labels. The normalization is chosen so that tr γ
(1)
ψ = N .

Notice that the density of ψ is just the diagonal of γ
(1)
ψ : ρψ(x) = γ

(1)
ψ (x;x). More generally,
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k-particle reduced densities are obtained by tracing out N − k particles (and replacing
the normalization factor N by

(
N
k

)
). Fermionic one-particle densities satisfy the important

property 0 ≤ γ
(1)
ψ ≤ 1. We denote by D the set of admissible fermionic density matrices:

D := {γ | 0 ≤ γ ≤ 1, tr γ = N}.
Given a fermionic density matrix γ, its Hartree-Fock energy is:

EHF(γ) = trhγ +
1

2N1/3

∫
dxdy V (x− y)

[
γ(x;x)γ(y; y)− |γ(x; y)|2

]
(2.11)

where h = −∆ +Vext. The second term in Eq. (2.11) is called the direct term, while the last
one is called the exchange term. It is not difficult to see that the exchange term is always
smaller than the direct term.

One expects the infimum of EHF to be a good approximation of the ground state energy
of Htrap

N . For example, for a bounded potential V such that V̂ ≥ 0:

inf
ψ∈L2

a(R3N )

〈ψ,Htrap
N ψ〉

〈ψ,ψ〉 = inf
γ∈D
EHF(γ) +O(N2/3) ; (2.12)

the error terms are bounded proportionally to N2/3, which is better than what one would
get comparing with Thomas-Fermi theory.

Concerning the structure of the Hartree-Fock minimizer in the right hand side of (2.12),
Lieb’s variational principle implies that it is an orthogonal projection: ω = ω2. In other
words, the optimal Hartree-Fock energy is the energy of a suitable Slater determinant.
Given N orthonormal functions fi ∈ L2(R3), also called orbitals, the corresponding Slater
determinant is:

ψSlater(x1, . . . , xN ) :=
1√
N !

∑

π∈SN

σπfπ(1)(x1) · · · fπ(N)(xN ) , (2.13)

where SN is the set of permutations of {1, 2, . . . , N}, with sign σπ = ±1. The reduced
one-particle density matrix of ψSlater is:

ω = N tr2,...,N |ψSlater〉〈ψSlater| =
N∑

j=1

|fj〉〈fj | . (2.14)

Slater determinants are examples of quasi-free states; these are states for which all k-particle
marginals can be computed starting from the reduced one-particle density matrix, in a well-
defined way (using the Wick rule). In particular, their energy only depends on the reduced
one-particle density (in presence of a two-body potential, the energy of a generic state would
also depend on the two-particle density). The fact that ω is a projection is referred to by
saying that Slater determinants are pure quasi-free states.

Semiclassical ideas can be used to approximate the minimizer of the Hartree-Fock enegy
functional. Let us introduce

h(p, q) = p2 + φTF(q)

φTF = Vext +N−1/3ρTF ∗ V , p, q ∈ R3 ,
(2.15)

where ρTF is the minimizer of the Thomas-Fermi energy functional. The function φTF is
called the Thomas-Fermi potential. Let us define:

ωsc :=

∫

h(p,q)≤µ
|fpq〉〈fpq| , fpq(x) = eip·xg(x− q) (2.16)
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for a suitable g ∈ L2(R3). The parameter µ is called chemical potential, and it is chosen
so that trωsc = N . The functions fpq are called coherent states; roughly, fpq is the wave
function of one particle localized around q, with momentum p. Following [14], it is possible
to show that for N � 1 the minimizer ω of EHF is well approximated by ωsc:

tr |ωsc − ω|2 ≤ CN5/6 . (2.17)

Recall that the trivial estimate would be N . The operator ωsc is called the semiclassical
approximation of ω.

The validity of Hartree-Fock theory has been first proven by Bach for large atoms, [3];
later, a simpler and more general proof has been given by Graf-Solovej, [14]. Notice that in
the case of a bounded potential the estimate of the error term in (3.22) is not negligible with
respect to the exchange term. However, the exchange term becomes larger in presence of an
unbounded interaction potential. In particular, in [3, 14] the Authors considered particles
interacting via a Coulomb interaction, and they proved that the error term is subleading
with respect to the exchange term.

3 Fermionic mean-field dynamics

We are interested in the dynamics of interacting fermionic systems in the mean-field scaling.
In order to observe a nontrivial evolution, let us assume that at the time t = 0 the trapping
potential Vext is modified, or switched off for simplicity. The Schrödinger dynamics is:

i∂tψN,t =
[ N∑

j=1

−∆j +N−1/3
∑

i<j

V (xi − xj)
]
ψN,t , ψN,0 ≡ ψN . (3.18)

It is important to identify the relevant time scale, on which the system undergoes a macro-
scopic change. The typical kinetic energy per particle is O(N2/3); hence, the “classical”
velocity of one particle is N1/3. That is, a particle covers a distance of order 1 in a time
of order N−1/3; thus, on this time scale the system undergoes a macroscopic change, since
the initial data was initially confined in a region Λ ⊂ R3 with volume |Λ| = O(1). It is
convenient to rescale time, so that a particle covers a distance O(1) in a time O(1). After
rescaling time, the Schrödinger equation becomes:

iN1/3∂tψN,t =
[ N∑

j=1

−∆j +N−1/3
∑

i<j

V (xi − xj)
]
ψN,t . (3.19)

Let us introduce the parameter ε = N−1/3. Multiplying left hand side and right hand side
of (3.19) by ε2 we get:

iε∂tψN,t =
[ N∑

j=1

−ε2∆j +N−1
∑

i<j

V (xi − xj)
]
ψN,t

≡ HNψN,t .

(3.20)

That is, fermionic mean–field scaling is naturally coupled with a semiclassical scaling.
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3.1 Hartree-Fock and Vlasov dynamics

Given the solution at time t of the Schrödinger equation (3.20), ψN,t = e−iHN t/εψN , we
define the time-evolved reduced one-particle density matrix as

γ
(1)
N,t := N tr2,...,N |ψN,t〉〈ψN,t| . (3.21)

At the time t = 0 the state of the system is well approximated by a Slater determinant,
with reduced one-particle density matrix given by the minimizer of EHF. At time t > 0,
one expects that state of the system to be still described by a suitable Slater determinant;
its reduced one-particle density matrix ωN,t = ω2

N,t is the solution of the time-dependent
Hartree-Fock equation:

iε∂tωN,t =
[
hHF(t), ωN,t

]

hHF(t) = −ε2∆ + ρt ∗ V −Xt ,
(3.22)

where ρt(x) = N−1ωN,t(x;x) and Xt is an operator on L2(R3) with kernel Xt(x; y) =
N−1V (x− y)ωN,t(x; y).

As N → ∞, the next degree of approximation is provided by the Vlasov equation. Let
us define the Wigner transform of the solution at time t of (3.22) as

WN,t(x, p) :=
ε3

(2π)3

∫
dy e−ip·yωN,t(x+ εy/2;x− εy/2) . (3.23)

As N → ∞, we expect the “phase-space density” W∞,t(x, p) to evolve according to the
Vlasov equation:

∂tW∞,t(x, p) + p · ∇xW∞,t(x, p) =
(
∇V ∗ ρt

)
(x) · ∇pW∞,t(x, p) . (3.24)

The Vlasov equation describes a classical effective dynamics; it can be derived directly from
classical mechanics, for particles interacting in the mean-field scaling. The emergence of a
classical effective dynamics is not surprising, and it is due to the presence of the semiclassical
limit ε→ 0 in (3.22).

3.2 Rigorous results

In the mean-field plus semiclassical scaling, the first rigorous derivation of the Vlasov equa-
tion is the one of Narnhofer-Sewell [21], for analytic interaction potentials. Shortly after, the
result has been generalized to a much larger class of potentials by Spohn [24], who considered
twice differentiable interactions. Concerning the time-dependent Hartree-Fock equation, the
first rigorous derivation in this scaling regime is the one of Elgart-Erdős-Schlein-Yau [10],
for short times and for analytic interaction potentials. Recently, this resut has been gen-
eralized by Benedikter-Porta-Schlein [5] to a much larger class of interactions (essentially,
twice differentiable); convergence was proven for all times, with effective estimates on the
rate of convergence. Later, the same result has been obtained by Petrat-Pickl [22], with a
different method. The result of [5] applies to initial data describing pure states (e.g., approx-
imate Slater determinants); very recently a similar result has been proven for mixed states
(describing positive temperature states) by Benedikter-Jaksic-Porta-Saffirio-Schlein [7].

Concerning other scaling regimes, different groups studied the case of mean-field (1/N cou-
pling) without semiclassical scaling. The first derivation of the time-dependent Hartree-Fock
equation is the one of Bardos-Golse-Gottlieb-Mauser [4], for bounded interaction potentials.
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The result has been extended by Fröhlich-Knowles [12] to the case of a Coulomb interaction.
Finally, a regularized Coulomb interaction with a N−2/3 coupling constant has been studied
by Petrat-Pickl [22].

The above results concern the derivation of the Hartree-Fock or of the Vlasov equation
starting from many-body quantum dynamics. It is also interesting to study the derivation
of the Vlasov equation starting from the Hartree-Fock equation. This problem has been
investigated by Lions-Paul [19] and Markovich-Mauser [20], for a Coulomb interaction. In
these works, the Authors proved the convergence of the Hartree-Fock equation to the Vlasov
equation in a weak sense, for mixed states. More recently, Athanassoulis-Paul-Pezzotti-
Pulvirenti [2] gave a derivation of the Vlasov equation from the Hartree-Fock equation with
estimates on the rate of convergence, for bounded interaction potentials and for mixed states.

4 Hartree-Fock dynamics of pure states

Here we discuss our result about the derivation of the time-dependent Hartree-Fock equation
for the dynamics of pure states, [5].

4.1 Main result

We present the theorem in a simplified form. We refer the reader to [5, 6] for more details.

Theorem 4.1. Let V ∈ L1(R3), such that
∫
dp |V̂ (p)|(1 + |p|2) < ∞. Let ψN ∈ L2

a(R3N )

such that tr |γ(1)N − ωN | ≤ C, with ωN = ω2
N , trωN = N and

tr |[x, ωN ]| ≤ CNε , tr |[ε∇, ωN ]| ≤ CNε , ε = N−1/3 . (4.25)

Let γ
(1)
N,t be the reduced one-particle density matrix of ψN,t = e−iHN t/εψN , the solution of

(3.18). Let ωN,t be the solution of the time-dependent Hartree-Fock equation:

iε∂tωN,t = [−ε2∆ + V ∗ ρt −Xt, ωN,t] , ωN,0 ≡ ωN .

Then, for some constant c > 0 and for all t ∈ R:

tr |γ(1)N,t − ωN,t|2 ≤ exp(c exp(c|t|)) tr |γ(1)N,t − ωN,t| ≤ N1/2 exp(c exp(c|t|)) (4.26)

Remark.

(i) Recall that tr |ωN,t| = tr |ωN,t|2 = N . Thus, the above theorem proves convergence
of many-body quantum dynamics towards Hartree-Fock dynamics with rate 1/N1/2 in
both Hilbert-Schmidt1 and trace norms.

(ii) It is well known that in Hartree-Fock theory the exchange term is subleading with
respect to the direct term. This fact is evident in our result, too: dropping Xt does not
deteriorate the rate of convergence. Thus, the theorem does not distinguish between
Hartree and Hartree-Fock evolutions. In analogy with the study of the ground state of
large atoms [3, 14], one expects the exchange term to become more relevant for more
singular potentials (e.g. Coulomb).

1The Hilbert-Schmidt norm is defined as ‖A‖HS =
√

tr |A|2.
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(iii) The result has been extended in [6] to the dynamics of pseudorelativistic fermions.
That is, the Laplacian is replaced by

√
−ε2∆ +m2, with m = O(1). Being the typical

momentum of order N1/3, this case is not a trivial modification of the one discussed
above. Under similar assumptions, we proved the convergence of the quantum many-
body dynamics to the pseudorelativistic Hartree-Fock evolution:

iε∂tωN,t = [
√
−ε2∆ +m2 + ρt ∗ V −Xt, ωN,t] . (4.27)

(iv) The estimates (4.25) are crucial for our result; without them, the result is not expected
to hold. These estimates encode the semiclassical structure of the initial data, which
is expected to hold for the Hartree-Fock approximation of the ground state of Htrap

N .
For instance, it is possible to see that they are true for the semiclassical approximation
of the ground state, given by ωsc in Eq. (2.16).

(v) A similar result holds for k−particle densities, with k > 1.

4.2 Some elements of the proof

The proof of the theorem is based on a convenient representation of the quantum dynamics
in Fock space. The fermionic Fock space is defined as:

F = C⊕
⊕

n≥1
L2
a(R3n)

F 3 ψ = (ψ(0), ψ(1), . . . , ψ(n), . . .) , ψ(n) ∈ L2
a(R3n) . (4.28)

Each entry of the infinite sequence ψ can be though as the (non-normalized, in general) wave
function of n fermions. An important example of vector in the Fock space is the vacuum,
Ω = (1, 0, . . . , 0, . . .). Physically, it describes the situation in which no particles are present.

It is convenient to introduce creation/annihilation operators, a∗(f) , a(f) : F → F , for
f ∈ L2(R3). They act in the following way:

(a∗(f)ψ)(n)(x1, . . . , xn) =
1√
n

n∑

j=1

(−1)jf(xj)ψ
(n−1)(x1, . . . , xj−1, xj+1, . . . , xn)

(a(f)ψ)(n)(x1, . . . , xn) =
√
n+ 1

∫
dxf(x)ψ(n+1)(x, x1, . . . , xn), ∀ψ ∈ F .

That is, they formally create or annihilate a fermionic particle with wave function f . They
satisfy the canonical anticommutation relations:

{a(f), a∗(g)} = 〈f, g〉L2 , {a(f), a(g)} = {a∗(f), a∗(g)} = 0 , (4.29)

which in particular imply that fermionic operators are bounded: ‖a∗(f)‖ = ‖a(f)‖ = ‖f‖2.
Time evolution is generated in Fock space by HN , the second quantization of the Hamil-

tonian; it acts as (HNψ)(n) = H
(n)
N ψ(n), where:

H
(n)
N :=

n∑

j=1

−ε2∆j +
1

N

n∑

i<j

V (xi − xj) (4.30)

is an operator on L2(R3n). Thus, the time evolution of ψ ∈ F is t 7→ e−iHN t/εψ. Notice that
the different sectors of the Fock space evolve independently.
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A crucial role in our proof is played by Bogoliubov transformations, [23]. Let

ωN =
N∑

j=1

|fj〉〈fj | , (4.31)

with {fj}Nj=1 a family of N orthonormal functions. We complete this family to obtain an

orthonormal basis of L2(R3), that we denote by {fj}∞j=1. A Bogoliubov transformation is a
map RωN : F → F such that:

RωN Ω = (0, . . . , 0, ψSlater, 0, . . .)

RωNa(fi)R
∗
ωN

= a(fi)χ(i > N) + a∗(fi)χ(i ≤ N) ,
(4.32)

where χ(·) is the characteristic function. In Eq. (4.32), ψSlater is the Slater determinant
with reduced one-particle density given by ωN , and it appears in the N -particle component
of RωN Ω. Bogoliubov transformations are unitary maps, R∗ωN

RωN = 1. More generally, it
is possible to define a time-dependent Bogoliubov transformation RωN,t ≡ Rt, where ωN,t is
the solution at time t of the time-dependent Hartree-Fock equation.

These notions allow to give a very clear interpretation of the convergence of the quantum
many-body dynamics to the effective evolution. Assuming for simplicity the initial data to
be a Slater determinant, it turns out that:

tr |γ(1)N,t − ωN,t|2 ≤ C〈UN (t)Ω,NUN (t)Ω〉 , (4.33)

where: N is the number operator, N :=
∑∞

j=1 a
∗(ff )a(fj), acting as (Nψ)(n) = nψ(n); and

UN (t) is the fluctuation dynamics:

UN (t) := R∗t e
−iHN t/εR0 . (4.34)

This dynamics does not commute with the number operator. Physically, the expectation
value of N over the state UN (t)Ω is the number of fluctuations of the many-body dynamics
with respect to the effective evolution.

To control the growth of the fluctuations, we use a Gronwall-type strategy. Namely, the
goal is to show that:

∣∣∣iε d
dt
〈UN (t)Ω, (N + 1)UN (t)Ω〉

∣∣∣ ≤ C(t)ε〈UN (t)Ω, (N + 1)UN (t)Ω〉 , (4.35)

for a possibly time dependent C(t), bounded uniformly in N for every fixed t ∈ R. Then,
if this estimate holds a standard application of Gronwall’s lemma implies that the quantity
〈UN (t)Ω,NUN (t)Ω〉 grows at most exponentially in time, uniformly in N . A crucial point
is to extract the factor ε in the right hand side of (4.35). To do this, we rely on the semi-
classical structure of the initial data, Eq. (4.25); in particular, we show that this structure
is propagated along the flow of the Hartree-Fock equation. Namely, we prove that:

tr |[x, ωN,t]| ≤ CNε exp(c|t|) , tr |[ε∇, ωN,t]| ≤ CNε exp(c|t|) , ∀t ∈ R . (4.36)

These estimates can be used to extract the factor ε in the right hand side of Eq. (4.35)
(where C(t) = exp(c|t|) now), and they allow to prove that for every fixed t ∈ R the number
of fluctuations is bounded uniformly in N .
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5 Hartree-Fock dynamics of mixed states

So far, we discussed the dynamics of pure states, which describe systems at zero temperature.
Mathematically, pure states are described by vectors in Fock space. At positive temperature,
however, this description does not apply: instead, one has to consider mixed states.

5.1 Araki-Wyss representation

A fermionic density matrix is an operator acting on the fermionic Fock space F , of the
following form:

ρN =
∑

n

λn|ψn〉〈ψn| , ψn ∈ F , 0 ≤ λn ≤ 1 , (5.37)

for {ψn} orthonormal. The normalization condition is imposed by requiring
∑

n λn = 1. The
coefficients {λn} are the probabilities for finding the state in ψn. Pure states corresponds
to the situation in which λn 6= 0 for only one value of n. If more than one λn is different
from zero, we have a mixed state. As the expression (5.37) suggests, mixed states do not
correspond to vectors in F : their density matrix is not the projection over a ψn ∈ F .
However, it turns out that mixed states can be thought as vectors over a “larger” Fock
space. This representation takes the name of purification (see [9] for an extensive review of
the subject).

Let {ξn} be a sequence of complex numbers, such that |ξn|2 = λn, and let {φn} be an
orthonormal basis on the Fock space F . We define

κN =
∑

n

ξn|ψn〉〈φn| , κNκ
∗
N = ρN . (5.38)

Being ρN trace-class in F , κN is a Hilbert-Schmidt operator. As such, it is isomorphic to a
vector in F ⊗ F :

κN '
∑

n

ξnψn ⊗ φn . (5.39)

This observation allows to represent the state of the system as a vector in F ⊗F . Let O be
an observable, that is a self-adjoint operator on F . Its expectation over the state ρN is:

〈O〉ρN = trOρN = 〈κN , O ⊗ 1κN 〉 , (5.40)

where 〈·, ·〉 is the standard scalar product in F ⊗ F .

It is useful to notice that the doubled Fock space F ⊗ F is unitarily equivalent to
F(L2 ⊕ L2), the Fock space built over L2(R3) ⊕ L2(R3). The unitary implementing the
equivalence is called exponential law, and acts in the following way:

UΩ⊗ Ω = ΩF(L2⊕L2)

U [a(f)⊗ 1]U∗ = a(f ⊕ 0)

U
[
(−1)N ⊗ a(f)

]
U∗ = a(0⊕ f) .

(5.41)

Thus, a mixed state corresponds to a vector in F(L2⊕L2). In particular, the mixed quasi-
free state with reduced one-particle density matrix ωN (and with zero pairing amplitude, [23])
is represented by a vector of the form:

ϕN = RωN ΩF(L2⊕L2) , (5.42)
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with RωN a suitable Bogoliubov transformation on F(L2 ⊕ L2). Recall that ωN satisfies
0 ≤ ωN ≤ 1, trωN = N ; but, in general, ωN 6= ω2

N . This representation of mixed quasi-free
states is an example of the Araki-Wyss construction [1, 9], a well-known tool in quantum
statistical mechanics.

Finally, the time evolution t 7→ ψt of ψ0 ≡ ψ ∈ F(L2 ⊕ L2) is implemented by the
Liouvillian:

LN := U
[
HN ⊗ 1− 1⊗HN

]
U∗ , (5.43)

with HN the second quantized Hamiltonian (see Section 4.2). That is, ψt = e−iLN t/εψ.

5.2 Main result

Here we present the main result of [7], in a simplified form. We refer the reader to [7] for
more details.

Theorem 5.1. Let V ∈ L1(R3), such that
∫
dp |V̂ (p)|(1+|p|2) <∞. Let ϕN = RωN ΩF(L2⊕L2),

with 0 ≤ ωN ≤ 1, trωN = N such that, for ε = N−1/3:

tr |[x,√ωN ]|2 ≤ CNε2 tr |[ε∇,√ωN ]|2 ≤ CNε2

tr |[x,
√

1− ωN ]|2 ≤ CNε2 tr |[ε∇,
√

1− ωN ]|2 ≤ CNε2 .
(5.44)

Let γ
(1)
N,t be the reduced one-particle density matrix of ϕN,t = e−iLN t/εϕN . Let ωN,t be the

solution of the time-dependent Hartree-Fock equation:

iε∂tωN,t = [−ε2∆ + ρt ∗ V −Xt, ωN,t] , ωN,0 ≡ ωN . (5.45)

Then, for some c > 0 and for all t ∈ R:

tr |γ(1)N,t − ωN,t|2 ≤ exp(c exp(c|t|)) , tr |γ(1)N,t − ωN,t| ≤ N1/2 exp(c exp(c|t|)) . (5.46)

Remark.

(i) This theorem proves the convergence of quantum dynamics to the Hartree-Fock evo-
lution, with rate 1/N1/2 in both Hilbert-Schmidt and trace norms.

(ii) The estimates (5.44) play a role analogous to the one of (4.25) in Theorem 4.1. They
encode the semiclassical structure of the initial data, which is expected to hold for the
thermal state of Htrap

N at positive temperature.

(iii) The result can be extended to approximate quasi-free states RωN ξN , under the as-
sumptions:

ξN = χ(N ≤ CN)ξN , 〈ξN ,N 10ξN 〉 ≤ C̃ , (5.47)

whereN is the number operator on F(L2⊕L2), and C, C̃ are N -independent constants.

(iv) As for Theorem 4.1, the exchange term is subleading: dropping it does not affect the
estimates.

(v) A similar result holds for k-particle densities, with k > 1.
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The proof is based on a strategy conceptually similar to the one followed in the proof of
Theorem 4.1. We have

tr |γ(1)N,t − ωN,t|2 ≤ C〈UN (t)Ω,N UN (t)Ω〉 , (5.48)

where Ω ≡ ΩF(L2⊕L2), and UN (t) := R∗ωN,t
e−iLN t/εRωN is the dynamics of the fluctuations

in F(L2 ⊕ L2), an operator that does not commute with N . We control the growth of
the number of fluctuations using a Gronwall-type strategy (similar but not equal to the one
of [5]); as in the proof of Theorem 4.1, the semiclassical structure of the initial data (encoded
in Eqs. (5.44)) plays a crucial role in controlling the error on the physically relevant time
scale t = O(1).

References

[1] H. Araki and W. Wyss. Representations of canonical anticommutation relations. Helv. Phys.
Acta 37 (1964), 136.

[2] A. Athanassoulis, T. Paul, F. Pezzotti and M. Pulvirenti. Strong semiclassical approximation of
Wigner functions for the Hartree dynamics. Atti della Accademia Nazionale dei Lincei. Rendi-
conti Lincei. Matematica e Applicazioni. 22, 525–552 (2011).

[3] V. Bach. Error bound for the Hartree-Fock energy of atoms and molecules. Comm. Math. Phys.
147 (1992), no. 3, 527–548.

[4] C. Bardos, F. Golse, A. D. Gottlieb, and N. J. Mauser. Mean field dynamics of fermions and the
time-dependent Hartree-Fock equation. J. Math. Pures Appl. (9) 82 (2003), no. 6, 665–683.

[5] N. Benedikter, M. Porta and B. Schlein. Mean-field evolution of fermionic systems. Comm. Math.
Phys. 331, 1087–1131 (2014).

[6] N. Benedikter, M. Porta and B. Schlein. Mean-field dynamics of fermions with relativistic dis-
persion. J. Math. Phys. 55, 021901 (2014).
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